量子力学的实际是基于一个全新的数学根本之上,不再遵循粒子和波来描述实际的天下;而只不过操纵这些术语,来描述对天下的观察罢了。如许,在量子力学中存在着波和粒子的二重性:为了某些目标将考虑粒子成波是有效的,而为了其他目标最好将波考虑成粒子。这导致一个很首要的成果,人们能够察看到两束波或粒子之间的所谓的干与。
这量子会扰动这粒子,并以一种不能预感的体例窜改粒子的速率。别的,位置测量得越精确,所需的波长就越短,单个量子的能量就越大,如许粒子的速率就被扰动得越短长。
这两束波就相互抵消,而不像人们预感的那样,叠加在一起构成更强的波。一个光干与的熟知例子是,番笕泡上常常能看到色彩。这是因为从构成泡的很薄的水膜的两边的光反射引发的。白光由统统分歧波长或色彩的光波构成,在从水膜一边反射返来的具有必然波长的波的波峰和从另一边反射的波谷相重应时,对应于此波长的色彩就不在反射光中呈现,以是反射光就显得五彩缤纷。
很多人激烈地抵抗这类科学决定论的教义,他们感到这侵犯了上帝干与天下的自在。但直到20世纪初,这类看法仍被以为是科学的标给假定。这类信心必须被丢弃的一个最后的征象,是由英国科学家瑞利勋爵和詹姆斯・金斯爵士做的计算。他们指出一个热的物体――比方恒星――必须以无穷大的速率辐射出能量。遵循当时人们信赖的定律,一个热体必须在统统的频次划一地收回电磁波(诸如射电波、可见光或X射线)。比方,一个热体在每秒1万亿次颠簸至2万亿次颠簸频次之间的波收回和在每秒2万亿次颠簸至3万亿次颠簸频次之间的波一样的能量。而既然每秒颠簸数是无穷的,这意味着辐射出的总能量也必须是无穷的。
那也就是,一束波的波峰能够和另一束波的波谷相重合。
量子假定能够非常胜利地解释所观察到的热体的辐射发射率,但直到1926年另一名德国科学家威纳・海森伯提出闻名的不肯定性道理以后,人们才认识到它对决定性论的含义。为了预言一个粒子将来的位置和速率,人们必须能够精确地测量它现在的位置和速率。显而易见的体例是将光照到这粒子上。一部分光波被此粒子散射开来,由此指明它的位置。但是,人们不成能将粒子的位置肯定到比光的两个波峰之间间隔更小的程度,所觉得了切确测量粒子的位置,必须用短波长的光。但是,由普朗克的量子假定,人们不能用肆意小量的光;人们起码要用一个光量子。
不肯定性道理对我们的天下观有非常深远的影响。乃至到了70多年以后,很多哲学家还不能充分观赏它,它仍然是很多争议的主题。不肯定性道理使拉普拉斯的科学实际,即一个完整决定性论的宇宙模型的胡想寿终正寝:
普通而言,量子力学并不对一次观察预言一个伶仃的肯定成果。取而代之,它预言一组能够产生的分歧成果,并奉告我们每个成果呈现的概率。也就是说,如果我们对大量近似的体系作一样的测量,每一个体系以一样的体例肇端,我们将会找到测量的成果为A呈现必然的次数,为B呈现另一分歧的次数,等等。人们能够预言成果为A或B的呈现的次数的近似值,但不能对个别测量的特定成果作出预言。因此量子力学把非预感性或随机性的不成制止身分引进了科学。固然爱因斯坦在生长这些看法时起了很高文用,但他非常激烈地反对这些。他之以是获得诺贝尔奖就是因为他对量子实际的进献。即便如许,他也从不接管宇宙受机遇节制的观点;他的情感能够用他闻名的断言来表达:“上帝不掷骰子。”但是,其他大多数科学家情愿接管量子力学,因为它和尝试合适得很完美。它的的确确成为一个极其胜利的实际,并成为几近统统当代科学技术的根本。它制约着晶体管和集成电路的行动,而这些恰是电子设备诸如电视、计算机的根基元件。它还是当代化学和生物学的根本。物理科学未让量子力学恰当连络出来的独一范畴是引力和宇宙的大标准布局。