在1887年至1905年之间,最闻名者为荷兰物理学家亨得利克・洛伦兹做出的。但是,一名迄至当时还冷静知名的瑞士专利局的职员阿尔伯特・爱因斯坦,在1905年的一篇闻名的论文中指出,只要人们情愿丢弃绝对时候看法的话,全部以太的看法则是多余的。几个礼拜以后,法国第一流的数学家亨利・庞加莱也提出近似的观点。爱因斯坦的论证比庞加莱的论证更靠近物理,后者将其考虑为数学题目。凡是这个新实际归功于爱因斯坦,但人们不会健忘庞加莱的名字在此中起了首要的感化。
牛顿引力定律还奉告我们,物体之间的间隔越远,则引力越小。牛顿引力定律讲,一个恒星的引力只是一个近似恒星在间隔小一半时的引力的1/4。这个定律极其切确地预言了地球、玉轮和其他行星的轨道。如果这定律中恒星的万有引力随间隔减小或者增大得快一些,则行星轨道不再是椭圆的了,它们就会以螺旋线的形状要么回旋到太阳上去,要么从太阳逃逸。
如许,不存在绝对静止意味着不能像亚里士多德信赖的那样,给事件指定一个绝对的空间位置。事件的位置以及它们之间的间隔对于在有轨电车上和铁轨上的人来讲是分歧的,以是没有来由觉得一小我的态度比别人的更优胜。
相对论的一个划一不凡的推论是,它窜改了我们空间和时候的看法。在牛顿实际中,如果有一光脉冲从一处发到另一处,(因为时候是绝对的)分歧的观察者对这个路程所花的时候不会有贰言,但是(因为空间不是绝对的)他们在光行进的间隔上不会总获得分歧的定见。因为光速恰是它行进过的间隔除以破钞的时候,分歧的察看者就测量到分歧的光速。另一方面,在相对论中,统统的察看者必须在光以多快速率行进上获得分歧定见。但是,在光行进过量远的间隔上,他们仍然不能获得分歧定见。是以,现在他们对光要破钞多少时候上应当也不会获得分歧定见。(破钞的时候恰是用光速――对这一点统统的察看者都定见分歧――去除光行进过的间隔――对这一点他们定见不分歧。)换言之,相对论闭幕了绝对时候的看法!看来每个察看者都必然有他本身的时候测度,这是用他本身所照顾的钟记录的,而分歧察看者照顾的一样的钟的读数不需求分歧。
亚里士多德的传统观点还觉得,人们依托纯粹思惟便能够找出统统制约宇宙的定律:不需求用观察去查验之。
牛顿把伽利略的测量当作他的活动定律的根本。在伽利略的尝试中,当物体从斜坡上滚下时,它一向遭到稳定外力(它的重量)的感化,其效应是使它恒定地加快。
1676年,丹麦的天文学家欧尔・克里斯琴森・罗默第一次发明了,光以有限但非常高的速率观光的究竟。他察看到,木星的卫星不是以等时候间隔从木星背后出来,不像如果卫星以稳定速率环绕木星活动时,人们会预感的那样。本地球和木星都环绕着太阳公转时,它们之间的间隔在窜改着。罗默重视到,我们离木星越远则木星的月蚀呈现得越晚。他论证道,因为当我们分开更远时,光从木星卫星那边要花更长的时候才气达到我们这里。但是,他测得的木星到地球的间隔窜改不是非常精确,与现在的每秒186000英里的值比拟较,那么他所测的光速的数值为每秒140000英里。固然如此,罗默不但证了然光以有限速率行进,并且测量了阿谁速率,他的成绩是出色的――要晓得,这统统都是在牛顿颁发《数学道理》之前11年做出的。