首页 > 网游之另类仇敌 > 第26章 这是什么鬼节奏

我的书架

公式(1)叫做格林公式.

是以

把t再写成x,就变成了开首的公式,该公式就是牛顿-莱布尼茨公式。

【定义一】设是一个开地区,函数,在内具有一阶持续偏导数,如果对于内肆意两点,以及内从点到点的肆意两条曲线,,等式恒建立,就称曲线积分在内与途径无关;不然,称与途径有关.定义一还可换成以下等价的说法若曲线积分与途径无关,那么即:在地区内由所构成的闭合曲线上曲线积分为零.反过来,如果在地区内沿肆意闭曲线的曲线积分为零,也可便利地导出在内的曲线积分与途径无关.

【证明】先证:假定地区的形状以下(用平行于轴的直线穿过地区,与地区鸿沟曲线的交点最多两点)

本文由晋(jin)江(jiang)文学城独家公布,普通章节可下载【晋(jin)江(jiang)小说浏览app】支撑正版。千字三分,一章一毛,一月三块钱,可等闲收成正版名誉,捕获逗比作者一只。

因而有Φ(x)f(a)=f(x),当x=b时,Φ(b)=f(b)-f(a),

再假定穿过地区内部且平行于轴的直线与的的鸿沟曲线的交点最多是两点,用近似的体例可证

相干先容:对坐标的曲线积分与途径无关的定义

现在我们把积分区间的上限作为一个变量,如许我们就定义了一个新的函数:

格林公式

折叠单连通地区的观点:设d为平面地区,如果d内任一闭曲线所围的部分地区都属于d,则d称为平面单连通地区;不然称为复连通地区。浅显地讲,单连通地区是不含”洞”(包含”点洞”)与”裂缝”的地区。

电场强度e在肆意面积上的面积分

Φ(x)=x∫a*f(x)dx

折叠格林公式:【定理】设闭地区由分段光滑的曲线围成,函数及在上具有一阶持续偏导数,则有

ΔΦ=Φ(xΔx)-Φ(x)=xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt

另一方面,据对坐标的曲线积分性子与计算法有

明显,xΔx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=xΔx(上限)∫x(下限)f(t)dt

Φ(x)=x∫a*f(t)dt

2、b(上限)∫a(下限)f(x)dx=f(b)-f(a),f(x)是f(x)的原函数。

注:若地区不满足以上前提,即穿过地区内部且平行于坐标轴的直线与鸿沟曲线的交点超越两点时,可在地区内引进一条或几条帮助曲线把它分划成几个部分地区,使得每个部分地区合适上述前提,仍可证明格林公式建立.格林公式相同了二重积分与对坐标的曲线积分之间的联络,是以其利用非常地遍及.

研讨这个函数Φ(x)的性子:1、定义函数Φ(x)=x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联络

称为电场强度对该面积的通量。按照库仑定律能够证明电场强度对肆意封闭曲面的通量反比于该封闭曲面内电荷的代数和,(1)

牛顿-莱布尼茨公式

推荐阅读: 万域灵神     凤求凰     花村小道士     玄门青龙     爱上你,我心如刀割     霸龙神尊     我抢了太上老君的炼丹炉     蜜汁萌妻:总裁夜夜宠     无穷之旅     最强医生1     大夏第一纨绔     都市护花高手    
sitemap